Archive for the 'Technology' Category

Mar 18 2024

Energy Demand Increasing

Published by under Technology

For the last two decades electricity demand in the US has been fairly flat. While it has been increasing overall, the increase has been very low. This has been largely attributed to the fact that as the use of electrical devices has increased, the efficiency of those devices has also increased. The introduction of LED bulbs, increased building insulation, more energy efficient appliances has largely offset increased demand. However, the most recent reports show that US energy demand is turning up, and there is real fear that this recent spike is not a short term anomaly but the beginning of a long term trend. For example, the projection of increase in energy demand by 2028 has nearly doubled from the 2022 estimate to the 2023 estimate – ” from 2.6% to 4.7% growth over the next five years.”

First, I have to state my usual skeptical caveat – these are projections, and we have to be wary of projecting short term trends indefinitely into the future. The numbers look like a blip on the graph, and it seems weird to take that blip and extrapolate it out. But these forecasts are not just based on looking at such graphs and then extending the line of current trends. These are based on an industry analysis which includes projects that are already under way. So there is some meat behind these forecasts.

What are the factors that seem to be driving this current and projected increase in electricity demand? They are all the obvious ones you might think. First, something which I and other technology-watchers predicted, is the increase in the use of electrical vehicles. In the US there are more than 2.4 million registered electric vehicles. While this is only about 1% of the US fleet, EVs represent about 9% of new car sales, and growing. If we are successful in somewhat rapidly (it will still take 20-30 years) changing our fleet of cars from gasoline engine to electric or hybrid, that represents a lot of demand on the electricity grid. Some have argued that EV charging is mostly at night (off peak), so this will not necessarily require increased electricity production capacity, but that is only partly true. Many people will still need to charge up on the road, or will charge up at work during the day, for example. It’s hard to avoid the fact that EVs represent a potential massive increase in electricity demand. We need to factor this in when planning future electricity production.

Another factor is data centers. The world’s demand for computer cycles is increasing, and there are already plans for many new data centers, which are a lot faster to build than the plants to power them. Recent advances in AI only increase this demand. Again we may mitigate this somewhat by prioritizing computer advances that make computers more energy efficient, but this will only be a partial offset. We do also have to think about applications, and if they are worth it. The one that gets the most attention is crypto – by one estimate Bitcoin mining alone used 121 terra-watt hours of electricity in 2023, the same as the Netherlands (with a population of 17 million people).

Continue Reading »

No responses yet

Mar 11 2024

Mach Effect Thrusters Fail

Published by under Technology

When thinking about potential future technology, one way to divide possible future tech is into probable and speculative. Probable future technology involves extrapolating existing technology into the future, such as imaging what advanced computers might be like. This category also includes technology that we know is possible, we just haven’t mastered it yet, like fusion power. For these technologies the question is more when than if.

Speculative technology, however, may or may not even be possible within the laws of physics. Such technology is usually highly disruptive, seems magical in nature, but would be incredibly useful if it existed. Common technologies in this group include faster than light travel or communication, time travel, zero-point energy, cold fusion, anti-gravity, and propellantless thrust. I tend to think of these as science fiction technologies, not just speculative. The big question for these phenomena is how confident are we that they are impossible within the laws of physics. They would all be awesome if they existed (well, maybe not time travel – that one is tricky), but I am not holding my breath for any of them. If I had to bet, I would say none of these exist.

That last one, propellantless thrust, does not usually get as much attention as the other items on the list. The technology is rarely discussed explicitly in science fiction, but often it is portrayed and just taken for granted. Star Trek’s “impulse drive”, for example, seems to lack any propellant. Any ship that zips into orbit like the Millennium Falcon likely is also using some combination of anti-gravity and propellantless thrust. It certainly doesn’t have large fuel tanks or display any exhaust similar to a modern rocket.

In recent years NASA has tested two speculative technologies that claim to be able to produce thrust without propellant – the EM drive and the Mach Effect thruster (MET). For some reason the EM drive received more media attention (including from me), but the MET was actually the more interesting claim. All existing forms of internal thrust involve throwing something out the back end of the ship. The conservation of momentum means that there will be an equal and opposite reaction, and the ship will be thrust in the opposite direction. This is your basic rocket. We can get more efficient by accelerating the propellant to higher and higher velocity, so that you get maximal thrust from each atom or propellant your ship carries, but there is no escape from the basic physics. Ion drives are perhaps the most efficient thrusters we have, because they accelerate charged particles to relativistic speeds, but they produce very little thrust. So they are good for moving ships around in space but cannot get a ship off the surface of the Earth.

Continue Reading »

No responses yet

Mar 07 2024

Is the AI Singularity Coming?

Published by under Technology

Like it or not, we are living in the age of artificial intelligence (AI). Recent advances in large language models, like ChatGPT, have helped put advanced AI in the hands of the average person, who now has a much better sense of how powerful these AI applications can be (and perhaps also their limitations). Even though they are narrow AI, not sentient in a human way, they can be highly disruptive. We are about to go through the first US presidential election where AI may play a significant role. AI has revolutionized research in many areas, performing months or even years of research in mere days.

Such rapid advances legitimately make one wonder where we will be in 5, 10, or 20 years. Computer scientist Ben Goertzel, who popularized the term AGI (artificial general intelligence), recently stated during a presentation that he believes we will achieve not only AGI but an AGI singularity involving a superintelligent AGI within 3-8 years. He thinks it is likely to happen by 2030, but could happen as early as 2027.

My reaction to such claims, as a non-expert who follows this field closely, is that this seems way to optimistic. But Goertzel is an expert, so perhaps he has some insight into research and development that’s happening in the background that I am not aware of. So I was very interested to see his line of reasoning. Will he hint at research that is on the cusp of something new?

Goertzel laid out three lines of reasoning to support his claim. The first is simply extrapolating from the recent exponential grown of narrow AI. He admits that LLM systems and other narrow AI are not themselves on a path to AGI, but they show the rapid advance of the technology. He aligns himself here with Ray Kurzweil, who apparently has a new book coming out, The Singularity is Nearer. Kurzweil has a reputation for predicting advances in computer technology that were overly optimistic, so that is not surprising.

Continue Reading »

No responses yet

Mar 01 2024

Virtual Walking

When I use my virtual reality gear I do practical zero virtual walking – meaning that I don’t have my avatar walk while I am not walking. I general play standing up which means I can move around the space in my office mapped by my VR software – so I am physically walking to move in the game. If I need to move beyond the limits of my physical space, I teleport – point to where I want to go and instantly move there. The reason for this is that virtual walking creates severe motion sickness for me, especially if there is even the slightest up and down movement.

But researchers are working on ways to make virtual walking a more compelling, realistic, and less nausea-inducing experience. A team from the Toyohashi University of Technology and the University of Tokyo studied virtual walking and introduced two new variables – they added a shadow to the avatar, and they added vibration sensation to the feet. An avatar is a virtual representation of the user in the virtual space. Most applications allow some level of user control over how the avatar is viewed, but typically either first person (you are looking through the avatar’s eyes) or third person (typically your perspective is floating above and behind the avatar). In this study they used only first person perspective, which makes sense since they were trying to see how realistic an experience they can create.

The shadow was always placed in front of the avatar and moved with the avatar. This may seem like a little thing, but it provides visual feedback connecting the desired movements of the user with the movements of the avatar. As weird as this sounds, this is often all that it takes to not only feel as if the user controls the avatar but is embodied within the avatar. (More on this below.) Also they added four pads to the bottom of the feet, two on each foot, on the toe-pad and the heel. These vibrated in coordination with the virtual avatar’s foot strikes. How did these two types of sensory feedback affect user perception?

Continue Reading »

No responses yet

Feb 23 2024

Odysseus Lands on the Moon

Published by under Technology

December 11, 1972, Apollo 17 soft landed on the lunar surface, carrying astronauts Gene Cernan and Harrison Schmitt. This was the last time anything American soft landed on the moon, over 50 years ago. It seems amazing that it’s been that long. On February 22, 2024, the Odysseus soft landed on the Moon near the south pole. This was the first time a private company has achieved this goal, and the first time an American craft has landed on the Moon since Apollo 17.

Only five countries have ever achieved a soft landing on the moon, America, China, Russia, Japan, and India. Only America did so with a crewed mission, the rest were robotic. Even though this feat was first accomplished in 1966 by the Soviet Union, it is still an extremely difficult thing to pull off. Getting to the Moon requires powerful rocket. Inserting into lunar orbit requires a great deal of control, on a craft that is too far away for real time remote control. This means you either need pilots on the craft, or the craft is able to carry out a pre-programmed sequence to accomplish this goal. Then landing on the lunar surface is tricky. There is no atmosphere to slow the craft down, but also no atmosphere to get in the way. As the ship descends it burns fuel, which constantly changes the weight of the vehicle. It has to remain upright with respect to the lunar surface and reduce its speed by just the right amount to touch down softly – either with a human pilot or all by itself.

The Odysseus mission is funded by NASA as part of their program to develop private industry to send instruments and supplies to the Moon. It is the goal of their Artemis mission to establish a permanent base on the moon, which will need to be supported by regular supply runs. In January another company with a NASA grant under the same program, Astrobotic Technology, sent their own craft to the Moon, the Peregrine. However, a fuel leak prevented the craft from orienting its solar panels toward the sun, and the mission had to be abandoned. This left the door open for the Odysseus mission to grab the achievement of being the first private company to do so.

Continue Reading »

No responses yet

Feb 22 2024

AI Video

Published by under Technology

Recently OpenAI launched a website showcasing their latest AI application, Sora. This app, based on prompts similar to what you would use for ChatGPT or the image creation applications, like Midjourney or Dalle-2, creates a one minute photorealistic video without sound. Take a look at the videos and then come back.

Pretty amazing. Of course, I have no idea how cherry picked these videos are. Were there hundreds of failures for each one we are seeing? Probably not, but we don’t know. They do give the prompts they used, and they state explicitly that these videos were created entirely by Sora from the prompt without any further editing.

I have been using Midjourney quite extensively since it came out, and more recently I have been using ChatGPT 4 which is linked to Dalle-2, so that ChatGPT will create the prompt for you from more natural language instructions. It’s pretty neat. I sometimes use it to create the images I attach to my blog posts. If I need, for example, a generic picture of a lion I can just make one, rather than borrowing one from the internet and risking that some German firm will start harassing me about copyright violation and try to shake me down for a few hundred Euros. I also make images for personal use, mostly gaming. It’s a lot of fun.

Now I am looking forward to getting my hands on Sora. They say that they are testing the app, having given it to some creators to give them feedback. They are also exploring ways in which the app can be exploited for evil and trying to make it safe. This is where the app raises some tricky questions.

Continue Reading »

No responses yet

Feb 09 2024

JET Fusion Experiment Sets New Record

Published by under Technology

Don’t get excited. It’s always nice to see incremental progress being made with the various fusion experiments happening around the world, but we are still a long way off from commercial fusion power, and this experiment doesn’t really bring us any close, despite the headlines. Before I get into the “maths”, here is some quick background.

Fusion is the process of combining light elements into heavier elements. This is the process the fuels stars. We have been dreaming about a future powered by clean abundant fusion energy for at least 80 years. The problem is – it’s really hard. In order to get atoms to smash into each other with sufficient energy to fuse, you need high temperatures and pressures, like those at the core of our sun. We can’t replicate the density and pressure at a star’s core, so we have to compensate here on Earth with even higher temperatures.

There are a few basic fusion reactor designs. The tokamak design (like the JET rector) is a torus, with a plasma of hydrogen isotopes (usually deuterium and tritium) inside the torus contained by powerful magnetic fields. The plasma is heated and squeezed by brute magnetic force until fusion happens. Another method, the pinch method, also uses magnetic fields, but they use a stream of plasma that gets pinched at one point to high density and temperature. Then there is kinetic confinement which essentially uses an implosion created by powerful lasers to create a brief moment of high density and temperature. More recently a group has used sonic cavitation to create an instance of fusion (rather than sustained fusion). These methods are essentially in a race to create commercial fusion. It’s an exciting (if very slow motion) race.

Continue Reading »

No responses yet

Feb 01 2024

Some Future Tech Possibilities

Published by under Technology

It’s difficult to pick winners and losers in the future tech game. In reality you just have to see what happens when you try out a new technology in the real world with actual people. Many technologies that look good on paper run into logistical problems, difficulty scaling, fall victim to economics, or discover that people just don’t like using the tech. Meanwhile, surprises hits become indispensable or can transform the way we live our lives.

Here are a few technologies from recent news that may or may not be part of our future.

Recharging Roads

Imaging recharging your electric vehicle wirelessly just by driving over a road. Sounds great, but is it practical and scalable? Detroit is running an experiment to help find out. On a 400 meter stretch of downtown road they installed inducting cables under the ground and connected them to the city grid. EVs that have the $1,000 device attached to their battery can charge up while driving over this stretch of road.

The technology itself is proven, and is already common for recharging smartphones. It’s inductive charging, using a magnetic field to induce a current which recharges a battery. Is this a practical approach to range anxiety? Right now this technology costs $2 million per mile. Having any significant infrastructure of these roads would be incredibly costly, and it’s not clear the benefit is worth it. How much are they going to charge the EV? What is the efficiency? Will drivers fork out $1000 for minimal benefit?

Continue Reading »

No responses yet

Jan 30 2024

Neuralink Implants Chip in Human

Published by under Skepticism,Technology

Elon Musk has announced that his company, Neuralink, has implanted their first wireless computer chip into a human. The chip, which they plan on calling Telepathy (not sure how I feel about that) connects with 64 thin hair-like electrodes, is battery powered and can be recharged remotely. This is exciting news, but of course needs to be put into context. First, let’s get the Musk thing out of the way.

Because this is Elon Musk the achievement gets more attention than it probably deserves, but also more criticism. It gets wrapped up in the Musk debate – is he a genuine innovator, or just an exploiter and showman? I think the truth is a little bit of both. Yes, the technologies he is famous for advancing (EVs, reusable rockets, digging tunnels, and now brain-machine interface) all existed before him (at least potentially) and were advancing without him. But he did more than just gobble up existing companies or people and slap his brand on it (as his harshest critics claim). Especially with Tesla and SpaceX, he invested his own fortune and provided a specific vision which pushed these companies through to successful products, and very likely advanced their respective industries considerably.

What about Neuralink and BMI (brain-machine interface) technology? I think Musk’s impact in this industry is much less than with EVs and reusable rockets. But he is increasing the profile of the industry, providing funding for research and development, and perhaps increasing the competition. In the end I think Neuralink will have a more modest, but perhaps not negligible, impact on bringing BMI applications to the world. I think it will end up being a net positive, and anything that accelerates this technology is a good thing.

Continue Reading »

No responses yet

Jan 29 2024

Controlling the Narrative with AI

Published by under Technology

There is an ongoing battle in our society to control the narrative, to influence the flow of information, and thereby move the needle on what people think and how they behave. This is nothing new, but the mechanisms for controlling the narrative are evolving as our communication technology evolves. The latest addition to this technology is the large language model AIs.

“The media”, of course, has been a large focus of this competition. On the right there is constant complaints of the “liberal bias” in the media, and on the left there are complaints of the rise of right-wing media which they feel is biased and radicalizing. The culture wars focus mainly on schools, because those schools teach not only facts and knowledge but convey the values of our society. The left views DEI (diversity, equity, and inclusion) initiates as promoting social justice while the right views it as brainwashing the next generation with liberal propaganda. This is an oversimplification, but it is the basic dynamic. Even industry has been targeted by the culture wars – which narratives are specific companies supporting? Is Disney pro-gay? Which companies fly BLM or LGBTQ flags?

But increasingly “the narrative” (the overall cultural conversation) is not being controlled by the media, educational system, or marketing campaigns. It’s being controlled by social media. This is why, when the power of social media started to become apparent, many people panicked. Suddenly it seemed we had seeded control of the narrative to a few tech companies, who had apparently decided that destroying democracy was a price they were prepared to pay for maximizing their clicks. We now live in a world where YouTube algorithms can destroy lives and relationships.

Continue Reading »

No responses yet

Next »