Feb 20 2024

Scammers on the Rise

Good rule of thumb – assume it’s a scam. Anyone who contacts you, or any unusual encounter, assume it’s a scam and you will probably be right. Recently I was called on my cell phone by someone claiming to be from Venmo. They asked me to confirm if I had just made two fund transfers from my Venmo account, both in the several hundred dollar range. I had not. OK, they said, these were suspicious withdrawals and if I did not make them then someone has hacked my account. They then transferred me to someone from the bank that my Venmo account is linked to.

I instantly knew this was a scam for several reasons, but even just the overall tone and feel of the exchange had my spidey senses tingling. The person was just a bit too helpful and friendly. They reassured me multiple times that they will not ask for any personal identifying information. And there was the constant and building pressure that I needed to act immediately to secure my account, but not to worry, they would walk me through what I needed to do. I played along, to learn what the scam was. At what point was the sting coming?

Meanwhile, I went directly to my bank account on a separate device and could see there were no such withdrawals. When I pointed this out they said that was because the transactions were still pending (but I could stop them if I acted fast). Of course, my account would show pending transactions. When I pointed this out I got a complicated answer that didn’t quite make sense. They gave me a report number that would identify this event, and I could use that number when they transferred me to someone allegedly from my bank to get further details. Again, I was reassured that they would not ask me for any identifying information. It all sounded very official. The bank person confirmed (even though it still did not appear on my account) that there was an attempt to withdraw funds and sent me back to the Venmo person who would walk be through the remedy.

Continue Reading »

Comments: 0

Feb 19 2024

Fake Fossils

Published by under Evolution
Comments: 0

In 1931 a fossil lizard was recovered from the Italian Alps, believed to be a 280 million year old specimen. The fossil was also rare in that it appeared to have some preserved soft tissue. It was given the species designation Tridentinosaurus antiquus and was thought to be part of the Protorosauria group.

A recent detailed analysis of the specimen, hoping to learn more about the soft tissue elements of the fossil, revealed something unexpected. The fossil is a fake (at least mostly). What appears to have happened is that a real fossil which was poorly preserved was “enhanced” to make it more valuable. There are real fossilized femur bones and some bony scales on what was the back of the lizard. But the overall specimen was poorly preserved and of not much value. What the forger did was carve out the outline of the lizard around the preserved bones and then paint it black to make it stand out, giving the appearance of carbonized soft tissue.

How did such a fake go undetected for 93 years? Many factors contributed to this delay. First, there were real bones in the specimen and it was taken from an actual fossil deposit. Initial evaluation did reveal some kind of lacquer on the specimen, but this was common practice at the time as a way of preserving the fossils, so did not raise any red flags. Also, characterization of the nature of the black material required UV photography and microscopic examination using technology not available at the time. This doesn’t mean they couldn’t have revealed it as a fake back then, but it is certainly much easier now.

It also helps to understand how fossils are typically handled. Fossils are treated as rare and precious items. They are typically examined with non-destructive techniques. It is also common for casts to be made and photographs taken, with the original fossils then catalogued and stored away for safety. Not every fossil has a detailed examination before being put away in a museum drawer. There simply aren’t the resources for that.

Continue Reading »

Comments: 0

Feb 16 2024

Biofrequency Gadgets are a Total Scam

I was recently asked what I thought about the Solex AO Scan. The website for the product includes this claim:

AO Scan Technology by Solex is an elegant, yet simple-to-use frequency technology based on Tesla, Einstein, and other prominent scientists’ discoveries. It uses delicate bio-frequencies and electromagnetic signals to communicate with the body.

The AO Scan Technology contains a library of over 170,000 unique Blueprint Frequencies and created a hand-held technology that allows you to compare your personal frequencies to these Blueprints in order to help you achieve homeostasis, the body’s natural state of balance.

This is all hogwash (to use the technical term). Throwing out the names Tesla and Einstein, right off, is a huge red flag. This is a good rule of thumb – whenever these names (or Galileo) are invoked to hawk a product, it is most likely a scam. I guess you can say that any electrical device is based on the work of any scientist who had anything to do with electromagnetism.

Continue Reading »

Comments: 0

Feb 15 2024

Using AI and Social Media to Measure Climate Change Denial

A recent study finds that 14.8% of Americans do not believe in global climate change. This number is roughly in line with what recent survey have found, such as this 2024 Yale study which put the figure at 16%. In 2009, by comparison, the figure was at 33% (although this was a peak – the 2008 result was 21%). The numbers are also encouraging when we ask about possible solutions, with 67% of Americans saying that we should prioritize development of green energy and should take steps to become carbon neutral by 2050. The good news is that we now have a solid majority of Americans who accept the consensus on climate change and broadly support measures to reduce our carbon footprint.

But there is another layer to this study I first mentioned – the methods used in deriving the numbers. It was not a survey. It used artificial intelligence to analyze posts on X (Twitter) and their networks. The fact that the results aligns fairly well to more tried and true methods, like surveys, is somewhat validating of the methods. Of course surveys can be variable as well, depending on exactly how questions are asked and how populations are targeted. But multiple well designed survey by experienced institutions, like Pew, can create an accurate picture of public attitudes.

The advantage of analyzing social media is that it can more easily provide vast amounts of data. The authors report:

We used a Deep Learning text recognition model to classify 7.4 million geocoded tweets containing keywords related to climate change. Posted by 1.3 million unique users in the U.S., these tweets were collected between September 2017 and May 2019.

Continue Reading »

Comments: 0

Feb 13 2024

Flow Batteries – Now With Nanofluids

Battery technology has been advancing nicely over the last few decades, with a fairly predictable incremental increase in energy density, charging time, stability, and lifecycle. We now have lithium-ion batteries with a specific energy of 296 Wh/kg – these are in use in existing Teslas. This translates to BE vehicles with ranges from 250-350 miles per charge, depending on the vehicle. That is more than enough range for most users. Incremental advances continue, and every year we should expect newer Li-ion batteries with slightly better specs, which add up quickly over time. But still, range anxiety is a thing, and batteries with that range are heavy.

What would be nice is a shift to a new battery technology with a leap in performance. There are many battery technologies being developed that promise just that. We actually already have one, shifting from graphite anodes to silicon anodes in the Li-ion battery, with an increase in specific energy to 500 Wh/kg. Amprius is producing these batteries, currently for aviation but with plans to produce them for BEVs within a couple of years. Panasonic, who builds 10% of the world’s EV batteries and contracts with Tesla, is also working on a silocon anode battery and promises to have one in production soon. That is basically a doubling of battery capacity from the average in use today, and puts us on a path to further incremental advances. Silicon anode lithium-ion batteries should triple battery capacity over the next decade, while also making a more stable battery that uses less (or no – they are working on this too) rare earth elements and no cobalt. So even without any new battery breakthroughs, there is a very bright future for battery technology.

But of course, we want more. Battery technology is critical to our green energy future, so while we are tweaking Li-ion technology and getting the most out of that tech, companies are working to develop something to replace (or at least complement) Li-ion batteries. Here is a good overview of the best technologies being developed, which include sodium-ion, lithium-sulphur, lithium-metal, and solid state lithium-air batteries. As an aside, the reason lithium is a common element here is because it is the third-lightest element (after hydrogen and helium) and the first that can be used for this sort of battery chemistry. Sodium is right below lithium on the period table, so it is the next lightest element with similar chemistry.

Continue Reading »

Comments: 0

Feb 12 2024

The Exoplanet Radius Gap

Published by under Astronomy
Comments: 0

As of this writing, there are 5,573 confirmed exoplanets in 4,146 planetary systems. That is enough exoplanets, planets around stars other than our own sun, that we can do some statistics to describe what’s out there. One curious pattern that has emerged is a relative gap in the radii of exoplanets between 1.5 and 2.0 Earth radii. What is the significance, if any, of this gap?

First we have to consider if this is an artifact of our detection methods. The most common method astronomers use to detect exoplanets is the transit method – carefully observe a star over time precisely measuring its brightness. If a planet moves in front of the star, the brightness will dip, remain low while the planet transits, and then return to its baseline brightness. This produces a classic light curve that astronomers recognize as a planet orbiting that start in the plane of observation from the Earth. The first time such a dip is observed that is a suspected exoplanet, and if the same dip is seen again that confirms it. This also gives us the orbital period. This method is biased toward exoplanets with short periods, because they are easier to confirm. If an exoplanet has a period of 60 years, that would take 60 years to confirm, so we haven’t confirmed a lot of those.

There is also the wobble method. We can observe the path that a star takes through the sky. If that path wobbles in a regular pattern that is likely due to the gravitational tug from a large planet or other dark companion that is orbiting it. This method favors more massive planets closer to their parent star. Sometimes we can also directly observe exoplanets by blocking out their parent star and seeing the tiny bit of reflected light from the planet. This method favors large planets distant from their parent star. There are also a small number of exoplanets discovered through gravitational microlensing, and effect of general relativity.

None of these methods, however, explain the 1.5 to 2.0 radii gap. It’s also likely not a statistical fluke given the number of exoplanets we have discovered. Therefore it may be telling us something about planetary evolution. But there are lots of variables that determine the size of an exoplanet, so it can be difficult to pin down a single explanation.

Continue Reading »

Comments: 0

Feb 09 2024

JET Fusion Experiment Sets New Record

Don’t get excited. It’s always nice to see incremental progress being made with the various fusion experiments happening around the world, but we are still a long way off from commercial fusion power, and this experiment doesn’t really bring us any close, despite the headlines. Before I get into the “maths”, here is some quick background.

Fusion is the process of combining light elements into heavier elements. This is the process the fuels stars. We have been dreaming about a future powered by clean abundant fusion energy for at least 80 years. The problem is – it’s really hard. In order to get atoms to smash into each other with sufficient energy to fuse, you need high temperatures and pressures, like those at the core of our sun. We can’t replicate the density and pressure at a star’s core, so we have to compensate here on Earth with even higher temperatures.

There are a few basic fusion reactor designs. The tokamak design (like the JET rector) is a torus, with a plasma of hydrogen isotopes (usually deuterium and tritium) inside the torus contained by powerful magnetic fields. The plasma is heated and squeezed by brute magnetic force until fusion happens. Another method, the pinch method, also uses magnetic fields, but they use a stream of plasma that gets pinched at one point to high density and temperature. Then there is kinetic confinement which essentially uses an implosion created by powerful lasers to create a brief moment of high density and temperature. More recently a group has used sonic cavitation to create an instance of fusion (rather than sustained fusion). These methods are essentially in a race to create commercial fusion. It’s an exciting (if very slow motion) race.

Continue Reading »

Comments: 0

Feb 06 2024

Weaponized Pedantry and Reverse Gish Gallop

Have you ever been in a discussion where the person with whom you disagree dismisses your position because you got some tiny detail wrong or didn’t know the tiny detail? This is a common debating technique. For example, opponents of gun safety regulations will often use the relative ignorance of proponents regarding gun culture and technical details about guns to argue that they therefore don’t know what they are talking about and their position is invalid. But, at the same time, GMO opponents will often base their arguments on a misunderstanding of the science of genetics and genetic engineering.

Dismissing an argument because of an irrelevant detail is a form of informal logical fallacy. Someone can be mistaken about a detail while still being correct about a more general conclusion. You don’t have to understand the physics of the photoelectric effect to conclude that solar power is a useful form of green energy.

There are also some details that are not irrelevant, but may not change an ultimate conclusion. If someone thinks that industrial release of CO2 is driving climate change, but does not understand the scientific literature on climate sensitivity, that doesn’t make them wrong. But understanding climate sensitivity is important to the climate change debate, it just happens to align with what proponents of anthropogenic global warming are concluding. In this case you need to understand what climate sensitivity is, and what the science says about it, in order to understand and counter some common arguments deniers use to argue against the science of climate change.

What these few examples show is a general feature of the informal logical fallacies – they are context dependent. Just because you can frame someone’s position as a logical fallacy does not make their argument wrong (thinking this is the case is the fallacy fallacy). What logical fallacy is using details to dismissing the bigger picture? I have heard this referred to as a “Reverse Gish Gallop”. I’m don’t use this term because I don’t think it captures the essence of the fallacy. I have used the term “weaponized pedantry” before and I think that is better.

Continue Reading »

Comments: 0

Feb 05 2024

Did They Find Amelia Earhart’s Plane

Is this sonar image taken at 16,000 feet below the surface about 100 miles from Howland island, that of a downed Lockheed Model 10-E Electra plane? Tony Romeo hopes it is. He spent $9 million to purchase an underwater drone, the Hugan 6000, then hired a crew and scoured 5,200 square miles in a 100 day search hoping to find exactly that. He was looking, of course, for the lost plane of Amelia Earhart. Has he found it? Let’s explore how we answer that question.

First some quick background – most people know Amelia Earhart was a famous (and much beloved) early female pilot, the first female to cross the Atlantic solo. She was engaged in a mission to be the first solo pilot (with her navigator, Fred Noonan) to circumnavigate the globe. She started off in Oakland California flying east. She made it all the way to Papua New Guinea. From there her plan was to fly to Howland Island, then Honolulu, and back to Oakland. So she had three legs of her journey left. However, she never made it to Howland Island. This is a small island in the middle of the Pacific ocean and navigating to it is an extreme challenge. The last communication from Earhart was that she was running low on fuel.

That was the last anyone heard from her. The primary assumption has always been that she never found Howland Island, her plane ran out of fuel and crashed into the ocean. This happened in 1937.  But people love mysteries and there has been endless speculation about what may have happened to her. Did she go of course and arrive at the Marshall Islands 1000 miles away? Was she captured by the Japanese (remember, this was right before WWII)? Every now and then a tidbit of suggestive evidence crops up, but always evaporates on close inspection. It’s all just wishful thinking and anomaly hunting.

Continue Reading »

Comments: 0

Feb 02 2024

How To Prove Prevention Works

Homer: Not a bear in sight. The Bear Patrol must be working like a charm.
Lisa: That’s specious reasoning, Dad.
Homer: Thank you, dear.
Lisa: By your logic I could claim that this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Homer: Uh-huh.
Lisa: But I don’t see any tigers around, do you?
[Homer thinks of this, then pulls out some money]
Homer: Lisa, I want to buy your rock.
[Lisa refuses at first, then takes the exchange]

 

This memorable exchange from The Simpsons is one of the reasons the fictional character, Lisa Simpson, is a bit of a skeptical icon. From time to time on the show she does a descent job of defending science and reason, even toting a copy of “Jr. Skeptic” magazine (which was fictional at the time then created as a companion to Skeptic magazine).

What the exchange highlights is that it can be difficult to demonstrate (let alone “prove”) that a preventive measure has worked. This is because we cannot know for sure what the alternate history or counterfactual would have been. If I take a measure to prevent contracting COVID and then I don’t get COVID, did the measure work, or was I not going to get COVID anyway? Historically the time this happened on a big scale was Y2K – this was a computer glitch set to go off when the year changed to 2000. Most computer code only encoded the year as two digits, assuming the first two digits were 19, so 1995 was encoded as 95. So when the year changed to 2000, computers around the world would think it was 1900 and chaos would ensue. Between $300 billion and $500 billion were spent world wide to fix this bug by upgrading millions of lines of code to a four digit year stamp.

Did it work? Well, the predicted disasters did not happen, so from that perspective it did. But we can’t know for sure what would have happened if we did not fix the code. This has lead to speculation and even criticism about wasting all that time and money fixing a non-problem. There is good reason to think that the preventive measures worked, however.

At the other end of the spectrum, often doomsday cults, predicting that the world will end in some way on a specific date, have to deal with the day after. One strategy is to say that the faith of the group prevented doomsday (the tiger-rock strategy). They can now celebrate and start recruiting to prevent the next doomsday.

Continue Reading »

Comments: 0

Next »